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Objective. To examine the impact of structural uncer-
tainty of Markov models in modeling cost-effectiveness
for the treatment of advanced breast cancer (ABC). Meth-
ods. Four common Markov models for ABC were identified
and examined. Markov models 1 and 2 have 4 health
states (stable-disease, responding-to-therapy, disease-
progressing, and death), and Markov models 3 and 4 only
have 3 health states (stable-disease, disease-progressing,
and death). In models 1 and 3, the possibility of death
can occur in any health state, while in models 2 and 4,
the chance of dying can only occur in the disease-
progressing health state. A simulation was conducted to
examine the impact of using different model structures
on cost-effectiveness results in the context of a combina-
tion therapy of lapatinib and capecitabine for the treat-
ment of HER2-positive ABC. Model averaging with an
assumption of equal weights in all 4 models was used to
account for structural uncertainty. Results. Markov model
3 yielded the lowest incremental cost-effectiveness ratio

(ICER) of $303,909 per quality-adjusted life year (QALY),
while Markov model 1 produced the highest ICER
($495,800/QALY). At a willingness-to-pay threshold of
$150,000/QALY, the probabilities that the combination
therapy is considered to be cost-effective for Markov mod-
els 1, 2, 3, and 4 were 14.5%, 14.1%, 21.6%, and 17.0%,
respectively. When using model averaging to synthesize dif-
ferent model structures, the resulting ICER was $389,270/
QALY. Conclusions. Our study shows that modeling ABC
with different Markov model structures yielded a wide
range of cost-effectiveness results, suggesting the need to
investigate structural uncertainty in health economic eval-
uation. When applied in the context of HER2-positive
ABC treatment, the combination therapy with lapatinib is
not cost-effective, regardless of which model was used
and whether uncertainties were accounted for. Key words:
Markov models; cost-effectiveness analysis; lapatinib;
HER2-positive advanced breast cancer; simulation. (Med
Decis Making XXXX;XX:xx–xx)

In economic evaluation, Markov models with
discrete health states are common and one of

the most powerful tools for assessing the cost-
effectiveness of health interventions. They are espe-
cially useful in modeling progressive diseases with
multiple health states over time.1 In advanced breast
cancer (ABC), also often referred to as metastatic
breast cancer (MBC) or stage 4 breast cancer, the dis-
ease has spread beyond the breast and lymph nodes
to distant organs. Patients with ABC can be treated
with several therapy options to shrink the tumors
(i.e., patients respond to treatment), prolong the
spread of metastases, improve symptoms and qual-
ity of life, and/or extend survival; they are, however,
unlikely to be cured from the disease.2 Using a Mar-
kov approach to model ABC provides insight into
the nature of optimal decisions that can aid treat-
ment decisions in an uncertain environment. A Mar-
kov model for ABC represents a set of health states
in which a patient is in before he/she eventually
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dies. Nevertheless, the set of health states and as-
sumptions of the immediate health state before
a patient dies in Markov models for ABC vary among
studies, thus contributing to the sources of uncertainty
in modeling cost-effectiveness for ABC treatments.3–22

There are inevitably many sources of uncertainty in
decision modeling such as the choice of methodologi-
cal approach used (e.g., Which decision-making per-
spective, time horizon, and discount rate are used?
Which methodological approach is used to value
health gains? What health outcomes are considered?),
estimation of model parameters (e.g., What is the true
value of each model parameter?), and model structures
(e.g., What structural features and aspects should be
incorporated to adequately represent and capture rele-
vant characteristics of a disease and intervention being
investigated?).23–25 In economic evaluation studies,
methodological and parameter uncertainties are often
addressed by using a ‘‘reference case’’ and probabilis-
tic sensitivity analyses, respectively.23 However,
structural uncertainty has received relatively little
attention, although it is often a very important source
of uncertainty in decision modeling.23–29

Given that there is a variation in the Markov model
structure in modeling cost-effectiveness for ABC,3–22

we aimed to examine the impact of structural uncer-
tainty on overall cost-effectiveness results. The objec-
tives of the current study were to identify the general
and common Markov models used in modeling cost-
effectiveness for ABC treatment and to examine the
impact of using different Markov model structures
on cost-effectiveness results in the context of a combi-
nation therapy of lapatinib (Tykerb; GlaxoSmithKline,
Research Triangle Park, NC) and capecitabine (Xeloda;
Genentech, South San Francisco, CA) for the treatment
of HER2-positive ABC.

METHODS

General Markov Models for ABC

We searched on PubMed using the following
search terms: (advanced breast cancer[Title/
Abstract]) OR (metastatic breast cancer[Title/
Abstract]) AND ((cost effectiveness[Title/Abstract])
OR (cost utility[Title/Abstract]) OR (analyses, cost
[MeSH Terms])) AND (Markov[Title/Abstract]). We
also searched Google Scholar and poster abstracts
presented at annual conferences of the International
Society for Pharmacoeconomics and Outcomes
Research (ISPOR), Society for Medical Decision Mak-
ing (SMDM), and American Society of Clinical
Oncology (ASCO) for Markov models with discrete

health states in cost-effectiveness studies of ABC or
MBC up to January 9, 2014.

Four common and general Markov models for
ABC/MBC were found. Markov model 13 has 4 health
states (stable-disease, respond-to-therapy, disease-
progressing, and death) with possibilities that death
can occur in all health states (Figure 1). In the sta-
ble-disease health state, we denote P1(S!S),
P1(S!R), P1(S!P), and P1(S!D) as the probabilities
of having a stable disease (i.e., patients are stable
without signs of disease progression, thus staying in
the same stable-disease health state), responding to
therapy (i.e., patients respond to therapy, thus mov-
ing to the respond-to-therapy health state), disease
progression (i.e., the disease is progressive, and
thus, patients move to the disease-progressing health
state), and death, respectively. In the respond-to-ther-
apy health state, P1(R!R), P1(R!P), and P1(R!D) are
the probabilities of continuing to respond to therapy
(i.e., patients continue to respond to therapy, thus
staying in the same respond-to-therapy health state),
disease progression, and death, respectively. In the
disease-progressing health state, P1(P!P) and
P1(P!D) are denoted as the probabilities of continu-
ing disease progression and death, respectively.

Markov model 24–9 also has 4 health states;
however, a possibility of death can only occur in
the disease-progressing health state (Figure 2). It
should be noted that assumption of death not occur-
ring from the stable-disease and respond-to-therapy
health states in Markov model 2 might not be justi-
fied. However, there may be possible explanations
for not modeling death from the stable-disease and
respond-to-therapy health states: 1) no information
reported from clinical trials, and thus, a certain
assumption has to be made to estimate transition
probabilities; 2) making the Markov model simple
and easy to estimate transition probabilities; or 3)
assuming the previously published Markov model
structure was correct and applying the structure for
one’s own study. Similar to Markov model 1, we
denote the sets of transition probabilities in the
stable-disease health state as P2(S!S), P2(S!R),
and P2(S!P); in the respond-to-therapy health state
as P2(R!R) and P2(R!P); and in the disease-pro-
gressing health state as P2(P!P) and P2(P!D).

In Markov models 310–17 and 4,18–22 without spe-
cifically differentiating patients whose diseases are
stable and those who respond to therapy, the stable-
disease and respond-to-therapy health states are
combined and represented as one stable-disease
health state. As a result, they have 3 health states
(stable-disease, disease-progressing, and death). The
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only difference between Markov models 3 and 4 is
that patients can potentially die in the stable-disease
or disease-progressing health state in model 3, while
a possibility of death can only occur in patients
whose diseases are progressive in model 4. We denote
the sets of transition probabilities in the stable-
disease and disease-progressing health states for

Markov model 3 as P3(S!S), P3(S!P), P3(S!D) and
P3(P!P), P3(P!D), respectively (Figure 3), and for
Markov model 4 as P4(S!S), P4(S!P) and P4(P!P),
P4(P!D), respectively (Figure 4).

We also found that several cost-effectiveness stud-
ies used Markov model structures that are different
than the 4 general Markov models above. However,

Figure 1 Markov model 1 with 4 health states.
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we excluded them from our study because they pro-
vided unclear structures of Markov models30 or their
model structures included multiple lines of treat-
ment that were developed specifically for hormonal
therapies in postmenopausal patients with ABC.31–37

Estimating Transition Probabilities in the Markov
Models

To estimate model transition probabilities, we
applied the DEALE method38–40 and the rule of

‘‘collectively exhaustive events’’ in a Markov model
that requires the sum of all transition probabilities
in a Markov health state to equal to one.40 In the sta-
ble-disease health state, the monthly transition prob-
abilities of disease progression were estimated using
the same information in all 4 models, that is, median
progression-free survival (PFS) obtained from rele-
vant clinical trial(s):

P1ðS! PÞ5 P2ðS! PÞ5 P3ðS! PÞ5
P4ðS! PÞ5 1� e � �

1
PFSð Þ3lnð1�0:5Þð Þ:

Figure 2 Markov model 2 with 4 health states.
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In models 1 and 2, the monthly transition probabili-
ties of responding to therapy could be estimated
using the average overall response rate (ORR) and
PFS reported from relevant clinical trial(s):

P1ðS! RÞ5 P2ðS! RÞ5 1� e �
ORR
PFSð Þ:

To estimate the monthly probability of death in the
stable-disease health state in model 1, it was assumed
that death rates were similar in both stable-disease
and respond-to-therapy health states. Thus, it was
estimated using the overall survival (OS) and PFS
reported from relevant clinical trial(s):

P1ðS! DÞ5 P1ðR! DÞ5

1� e 33 � 1
OSð Þ3 ln 1�0:5ð Þ�ð� 1

OS�PFSÞ3 ln 1�0:5ð Þð Þ=2ð Þ:

Using the same information (PFS and OS) reported
from the trial, the monthly transition probability of
death in the stable-disease health state in model 3
was estimated as the following:

P3ðS! DÞ5 1� e 23 � 1
OSð Þ3 ln 1�0:5ð Þ�ð� 1

OS�PFSÞ3 ln 1�0:5ð Þð Þ:

Also, applying the ‘‘collectively exhaustive events’’
rule, the monthly transition probabilities of continu-
ing to be in a stable disease for models 1, 2, 3, and 4
were the following:

P1 S! Sð Þ5 1� P1 S! Rð Þ1 P1 S! Pð Þ1 P1 S! Dð Þ½ �;

P2 S! Sð Þ5 1� ½ P2 S! Rð Þ1 P2 S! Pð Þð �;

P3 S! Sð Þ5 1� P3 S! Pð Þ1 P3 S! Dð Þ½ �; and

P4 S! Sð Þ5 1� P4 S! Pð Þ:

For models 1 and 2, in the respond-to-therapy health
state, the monthly transition probabilities of disease
progression were estimated using the median duration
of response (DoR) obtained from relevant trial(s):

P1ðR! PÞ5 P2ðR! PÞ5 1� e � �
1

DoRð Þ3lnð1�0:5Þð Þ:

Also, the monthly transition probabilities of continu-
ing to respond to therapy were the following:

Figure 3 Markov model 3 with 3 health states.
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P1 R! Rð Þ5 1� P1 R! Dð Þ1 P1 R! Pð Þ½ �; and

P2 R! Rð Þ5 1� P2 R! Pð Þ:

In the disease-progressing health state, the monthly
transition probabilities of death could be estimated
using median PFS and OS reported from relevant
clinical trial(s) in all 4 models:

P1ðP! DÞ5 P2ðP! DÞ5 P3ðP! DÞ

5 P4ðP! DÞ5 1� e � �
1

OS�PFSð Þ3lnð1�0:5Þð Þ:

Similarly, applying the ‘‘collectively exhaustive
events’’ rule, the monthly transition probabilities of
continuing to disease progression in all 4 models
were the following:

P1ðP! PÞ5 P2ðP! PÞ5 P3ðP! PÞ

5 P4ðP! PÞ5 e � �
1

OS�PFSð Þ3lnð1�0:5Þð Þ:

Simulation Study of the Combination Therapy of
Lapatinib and Capecitabine in HER2-Positive ABC

Overall, model transition probabilities were
obtained by generating relevant information, that is,

average ORR, median PFS, DoR, and OS generated
within their 95% confidence intervals (CIs) reported
from the lapatinib clinical trial41,42 and based on the
assumed beta or gamma distribution (Table 1).

For each ORR, PFS, DoR, and OS generated within
its 95% CI from the assumed distribution, a sample
was created containing 4 sets of transition probabili-
ties, one for each Markov model. Applying the
fundamental matrix solution40 to each set of transi-
tion probabilities, the overall cost, total life years,
and total quality-adjusted life years (QALYs) for
each Markov model in each sample were estimated
accordingly.

Table 1 summarizes the transition probabilities,
adjusted average costs, and health utilities6,9,43 in
each Markov health state for all 4 models with a 1.5-
month cycle length for the combination therapy of
lapatinib and capecitabine in HER2-positive ABC
from the US societal perspective. Major components
of the total costs in the stable-disease and respond-
to-therapy health states included the drug costs for
lapatinib and capecitabine, average treatment costs
for a cardiac event and a severe diarrhea episode,
and other monitoring laboratory tests such as left ven-
tricular ejection fraction, renal function, complete
blood count, and liver function.3 Markov models 3

Figure 4 Markov model 4 with 3 health states.
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and 4 assumed no difference in cost and quality-of-
life outcomes between the stable-disease and
respond-to-therapy health states; therefore, they
were collectively combined and represented as one
stable-disease health state. It should be noted that
previous studies showed that patients whose tumor

responded to therapy had better quality of life than
those whose tumor was stable and nonprogress-
ing.43–45 Nevertheless, it would be very difficult to
quantify costs especially during the rather short
period of time that the patient’s tumor responds to
therapy in ABC treatment. Instead, the overall cost

Table 1 Transition Probabilities, Adjusted Average Costs, and Health Utilities in Each Health State for All 4
Markov Models with 1.5-Month Cycle Length

Lapatinib + Capecitabine Capecitabine Alone

ReferenceBase Case Rangea Base Case Rangea

Stable-disease health state
Markov model 1

P1(S!P) 0.153 0.115–0.171 0.226 0.201–0.287 41, 42
P1(S!R) 0.055 0.047–0.078 0.050 0.045–0.061 41, 42
P1(S!D) 0.043 0.032–0.049 0.054 0.048–0.072 Assumedb

P1(S!S) = 1 – [P1(S!P) + P1(S!R) + P1(S!D)] 0.749 0.733–0.801 0.670 0.596–0.690 40
Markov model 2

P2(S!P) 0.153 0.115–0.171 0.226 0.201–0.287 41, 42
P2(S!R) 0.055 0.047–0.078 0.050 0.045–0.061 41, 42
P2(S!S) = 1 – [P2(S!P) + P2(S!R)] 0.792 0.782–0.833 0.724 0.668–0.738 40

Markov model 3
P3(S!P) 0.153 0.115–0.171 0.226 0.201–0.287 41, 42
P3(S!D) 0.022 0.016–0.023 0.042 0.037–0.056 41, 42
P3(S!S) = 1 – [P3(S!P) + P3(S!D)] 0.825 0.806–0.869 0.732 0.657–0.762 40

Markov model 4
P4(S!P) 0.153 0.115–0.171 0.226 0.201–0.287 41, 42
P3(S!S) = 1 2 P3(S!P) 0.847 0.829–0.885 0.774 0.713–0.799 40
Estimated cost,c $ 14,430 11,544–17,316 8414 6731–10,097 3
Health utility 0.70 0.50–0.80 0.70 0.50–0.80 6, 9, 43–45

Respond-to-therapy health state
Markov model 1

P1(R!P) 0.131 0.121–0.193 0.138 0.130–0.169 41, 42
P1(R!D) 0.043 0.032–0.049 0.054 0.048–0.072 Assumedb

P1(R!R) = 1 – [P1(R!P) + P1(R!D)] 0.826 0.758–0.847 0.808 0.759–0.822 40
Markov model 2

P2(R!P) 0.131 0.121–0.193 0.138 0.130–0.169 41, 42
P1(R!R) = 1 2 P1(R!P) 0.869 0.807–0.879 0.862 0.831–0.870 40
Estimated cost,c $ 14,430 11,544–17,316 8414 6731–10,097 3
Health utility 0.84 0.57–0.93 0.84 0.57–0.93 6, 9, 43–45

Disease-progressing health state
Markov models 1, 2, 3, and 4

P1(P!D) = P2(P!D) = P3(P!D) = P4(P!D) 0.105 0.079–0.121 0.088 0.078–0.118 41, 42
P1(P!P) = P2(P!P) = P3(P!P) = P4(P!P) 0.895 0.879–0.921 0.912 0.882–0.922 40
Estimated cost,c $ 7260 5808–8712 7606 6085–9127 3
Health utility 0.50 0.45–0.72 0.50 0.45–0.72 6, 9, 43–45

Note: P(S!R), probability of responding to therapy; P(S!P), probability of disease progression in the stable-disease health state; P(S!D), probability of
death in the stable-disease health state; P(S!S), probability of having a stable disease; P(R!R), probability of continuing to respond to therapy; P(R!D),
probability of death in the respond-to-therapy health state; P(R!P), probability of disease progression in the respond-to-therapy health state; P(P!D),
probability of death in the disease-progressing health state; P(P!P), probability of continuing disease progression.
a.Model transition probabilities were estimated by generating clinical data, that is, average overall response rate (varied in the assumed beta distribution),
median progression-free survival (varied in the assumed gamma distribution), duration of response (varied in the assumed gamma distribution), and over-
all survival (varied in the assumed gamma distribution) within their 95% confidence intervals (CIs) reported from the lapatinib clinical trial.
b.The death rates in the stable-disease and respond-to-therapy health states were assumed to be the same.
c.The estimated cost in each health state was assumed to vary within 620% of the average costs.
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during the PFS period, which collectively includes
both stable-disease and respond-to-therapy health
states, was typically estimated. Similar to the Le
and Hay study,3 we assumed that patients whose dis-
eases are progressive were treated with third-line
therapy; thus, the average cost in the disease-
progressing health state was estimated from the study
by McLachlan and others.46 In the current study, we
updated the current 2013 wholesale acquisition costs
for lapatinib ($31.3 per 250-mg tablet) and capecita-
bine ($33.2 per 500-mg tablet)47 and adjusted other
costs to 2013 US dollars using the Consumer Price
Index–Medical Care component48 (Table 3 in the
Appendix).

We generated 10,000 samples for each model. To
account for uncertainty in modeling cost-effectiveness
for ABC treatment, model averaging was used to esti-
mate overall cost-effectiveness results by taking the
means of total costs and QALYs of the 4 models from
the simulated samples, assuming equal weights in all
models. We presented model uncertainty using the
cost-effectiveness acceptability curves for each model
as well as the overall model. All simulations and anal-
yses were performed with the statistical software pack-
age R version 3.20 (Appendix).49

RESULTS

Table 2 reports the average total costs, QALYs,
incremental cost-effectiveness ratios (ICERs), and

probabilities at which the combination therapy with
lapatinib is considered a cost-effective strategy at
the willingness-to-pay threshold of $150,000/QALY
for 4 Markov models and the model averaging result
after simulated 10,000 samples.

Markov model 3 yielded the lowest ICER
($303,909/QALY) for the combination therapy, while
model 1 produced the highest ICER of $495,800/
QALY. Figure 5 shows the cost-effectiveness accept-
ability curves for all models, where the x-axis repre-
sented the theoretical amounts in terms of dollars
that society is willing to pay to gain one QALY, and
the y-axis indicated the probabilities that the combi-
nation therapy of lapatinib and capecitabine are cost-
effective, corresponding to the willingness-to-pay
thresholds chosen. At a willingness-to-pay threshold
of $150,000/QALY, the probabilities that the combi-
nation therapy is considered to be cost-effective for
Markov models 1, 2, 3, and 4 were 14.5%, 14.1%,
21.6%, and 17.0%, respectively. When using model
averaging to synthesize structural uncertainty with
an assumption of equal weights in all 4 models, the
resulting ICER was $389,270/QALY with a 15.8%
probability that the combination therapy is cost-
effective.

DISCUSSION

Whether due to a lack of available information,
a reduction of overall model complexity, or models

Table 2 Average Total Costs, Total QALYs, ICERs, and Probabilities of Being a Cost-effective Treatment

Lapatinib +
Capecitabine

Capecitabine
Alone ICER

Probability of Cost-effective Strategy
for Combination Therapy

Markov model 1
Total cost, $ 132,796 98,671 495,800/QALY 14.5% at WTP of 150,000/QALY
Total QALY 0.984 0.916

Markov model 2
Total cost, $ 170,807 125,418 447,308/QALY 14.1% at WTP of 150,000/QALY
Total QALY 1.271 1.170

Markov model 3
Total cost, $ 149,588 102,108 303,909/QALY 21.6% at WTP of 150,000/QALY
Total QALY 1.088 0.932

Markov model 4
Total cost, $ 168,659 121,189 390,216/QALY 17.0% at WTP of 150,000/QALY
Total QALY 1.228 1.106

Model averaging
Total cost, $ 155,463 111,846 389,270/QALY 15.8% at WTP of 150,000/QALY
Total QALY 1.143 1.031

Note: At the WTP threshold of $150,000/QALY of the combination therapy with lapatinib and capecitabine relative to capecitabine monotherapy in 4 Mar-
kov models and model averaging after 10,000 simulations. ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year; WTP, willingness to
pay.
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developed for specific diseases/treatments, there
have been a number of different Markov models in
modeling cost-effectiveness for ABC. Our study was
motivated by the question of how structural uncer-
tainty of Markov models in modeling ABC, that is,
using Markov models with different sets of health
states and assumptions, would impact overall cost-
effectiveness results. In the current study, we identi-
fied 4 common Markov models from a literature
search and examined their results in the context of
a combination therapy of lapatinib and capecitabine
for HER2-positive ABC using a simulation approach.

The major difference between the 4–health state
Markov models (models 1 and 2) and 3–health state
Markov models (models 3 and 4) is to distinguish
patients who respond to therapy and those whose
tumors are not classified as responding but are stable
and nonprogressive. Thus, factors that influence out-
comes of the respond-to-therapy health state in mod-
els 1 and 2 such as the ORR, DoR, and health utility
value would impact their overall cost-effectiveness
results. These factors were captured when we per-
formed the overall simulation in our study.

The variation in model structures for ABC
presented in the current study was associated with
cost-effectiveness results varying between $303,909/
QALY and $495,800/QALY. In other words, using
a different model structure, that is, Markov model 1
instead of model 3, would result in increasing 63%
of the ICER. When accounting for structural uncer-
tainty using the model averaging method and assum-
ing equal weights in all models, the resulting ICER
was $389,270/QALY. The range of ICERs for the com-
bination therapy with lapatinib in ABC from our anal-
ysis was very high and exceeded commonly accepted
willingness-to-pay thresholds in oncology; thus, it
would be unlikely to make an impact on the reim-
bursement decision. Nevertheless, this is a unique
case where the combination therapy with lapatinib
for HER2-positive ABC was a very expensive biologic,
and even though it prolonged the PFS period, it did
not extend OS. It would be more relevant for the reim-
bursement decision in cases where new anticancer
drugs show significant extension in OS and are expen-
sively priced. Moreover, in our analysis, we accounted
for both parameter and structural uncertainty; thus,

Figure 5 Cost-effectiveness acceptability curves for all models.
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the true impact of structural uncertainty on cost-effec-
tiveness results might have been substantially clouded
by the inclusion of parameter uncertainty.50

In the current study, it was noted that when mod-
eling cost-effectiveness for ABC with 4 health states
(Markov models 1 and 2), the resulting ICERs
appeared to be close and higher than modeling it
with 3 health states (Markov models 3 and 4). It is pos-
sible that the similarity of health states within the
model structure, that is, either a 3–health state model
or a 4–health state model, was related to less variation
in their cost-effectiveness results. On another note,
our simulations showed that Markov models 2 and
4 yielded both the highest average total costs and total
QALYs. It might result from the delay of death, that is,
patients could not die until their disease progressed,
in addition to the higher costs and utility values for
the response-to-therapy and stable-disease health
states as compared to the disease-progressing health
state; thus, more costs and QALYs were accumulated
in these models than in models 1 and 3.

For our analysis, we applied the model averaging
method with an assumption of equal weights in all
4 models to address structural uncertainty in the Mar-
kov model for ABC. However, it would be possible
that the 4 model structures are also presented a choice
between alternative and plausible values for new
uncertain parameters; thus, structural uncertainty
could be then parameterized.51 Specifically, 2 uncer-
tain parameters could be added to the overall ABC
model: 1) whether patients with ABC who respond
to therapy would have better outcomes as compared
to those whose disease is stable and not progressing,
even though they do not respond to therapy; and 2)
whether patients could die due to the disease before
their disease progresses. The prior distributions of
these uncertain parameters might be obtained from
evidence of previous studies or expert belief if avail-
able. In addition, structural uncertainty of the ABC
model might be further accounted for. In our model,
we only varied the cost after disease progression
that was based on the assumption that all patients
received additional third-line therapy. However,
further possible scenarios in which the survival
time after disease progression might or might not
be improved in patients who received additional
third-line therapy as compared to those who only
received supportive care could be considered as an
additional source of structural uncertainty in the
ABC model.

In conclusion, the current study examined the
impact of structural uncertainty of Markov models in
modeling cost-effectiveness for the treatment of ABC.

Overall, our simulation study of the combination ther-
apy with lapatinib showed that Markov models with
different sets of health states and assumptions produced
a wide range of cost-effectiveness results. Compared to
commonly accepted willingness-to-pay thresholds in
oncology, the addition of lapatinib to capecitabine was
clearly not cost-effective in all models. Although no
reverse in the cost-effectiveness decision was observed
due to the high costs in the combination therapy and
its limited efficacy, our study demonstrated the
importance of accounting for structural uncertainty
and further suggests the need to investigate struc-
tural uncertainty in health economic evaluation.

REFERENCES

1. Sonnenberg FA, Beck RJ. Markov models in medical decision

making. Med Decis Making. 1993;13:322–39.

2. Muss HB. Targeted therapy for metastatic breast cancer. N Engl J

Med. 2006;355:2783–5.

3. Le QA, Hay JW. Cost-effectiveness analysis of lapatinib in

HER2-positive advanced breast cancer. Cancer. 2009;115:489–98.

4. Hutton J, Brown R, Borowitz M, et al. A new decision model for

cost-utility comparisons of chemotherapy in recurrent metastatic

breast cancer. Pharmacoeconomics. 1996;9(Suppl):8–22.

5. Launois R, Reboul-Marty J, Henry B, Bonneterre J. A cost-utility

analysis of second-line chemotherapy in metastatic breast cancer:

docetaxel versus paclitaxel versus vinorelbine. Pharmacoeconom-

ics. 1996;10:504–21.

6. Brown RE, Hutton J. Cost-utility model comparing docetaxel

and paclitaxel in advanced breast cancer patients. Anticancer

Drugs. 1998;9:899–907.

7. Brown RE, Hutton J, Burrell A. Cost effectiveness of treatment

options in advanced breast cancer in the U.K. Pharmacoeconom-

ics. 2001;19:1091–102.

8. Cooper NJ, Abrams KR, Sutton AJ, Turner D, Lambert PC. A

Bayesian approach to Markov modelling in cost-effectiveness anal-

yses: application to taxane use in advanced breast cancer. J R Stat

Soc Ser A Stat Soc. 2003;166:389–405.

9. Elkin EB, Weinstein MC, Kuntz KM, et al. HER-2 testing

and trastuzumab therapy for metastatic breast cancer: a cost-

effectiveness analysis. J Clin Oncol. 2004;22:854–63.

10. Hillner BE, Smith TJ, Desch CE. Efficacy and cost-effectiveness

of autologous bone marrow transplantation in metastatic breast

cancer: estimates using decision analysis while awaiting clinical

trial results. JAMA. 1992;267(15):2055–61.

11. Hornberger J, Jamieson C, O’Shaughnessy J. Economic evalua-

tion of capecitabine-docetaxel combination treatment of metastatic

breast cancer: a micro-simulation study. Value Health. 2002;5(3):129.

12. Lidgren M, Wilking N, Jonsson B, Rehnberg C. Cost-effective-

ness of HER2 testing and trastuzumab therapy for metastatic breast

cancer. Acta Oncol. 2008;47:1018–28.

13. Benedict A, Cameron DA, Corson H, Jones SE. An economic

evaluation of docetaxel and paclitaxel regimens in metastatic

breast cancer in the UK. Pharmacoeconomics. 2009;27:847–59.

LE

10 � MEDICAL DECISION MAKING/MON–MON XXXX

 by guest on January 11, 2016mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com/


14. Frias C, Cortes J, Sequi MA, Oyaquez I, Casado MA. Cost-

effectiveness analyses of docetaxel versus paclitaxel once weekly

in patients with metastatic breast cancer in progression following

anthracycline chemotherapy, in Spain. Clin Transl Oncol. 2010;

12:692–700.

15. McLeod EJ, Lloyd A, Samyshkin Y, Prunieras F, Canney P. A

UK cost-utility analysis of paclitaxel albumin compared to sol-

vent-based paclitaxel monotherapy and docetaxel monotherapy

for pretreated metastatic breast cancer (MBC). Value Health.

2010;13(7):A269.

16. Machado M, Einarson TR. Lapatinib in patients with meta-

static breast cancer following initial treatment with trastuzumab:

an economic analysis from the Brazilian public health care per-

spective. Breast Cancer (Dove Med Press). 2012;4:173–82.

17. Lopes G, Glück S, Avancha K, Montero AJ. A cost effectiveness

study of eribulin versus standard single-agent cytotoxic chemo-

therapy for women with previously treated metastatic breast can-

cer. Breast Cancer Res Treat. 2013;137(1):187–93.

18. Alba E, Ciruelos E, Lopez R, et al. Cost-utility analysis of nano-

particle albumin-bound paclitaxel versus paclitaxel in monother-

apy in pretreated metastatic breast cancer in Spain. Expert Rev

Pharmacoecon Outcomes Res. 2013;13:381–91.

19. Dedes KJ, Matter-Walstra K, Schwenkglenks M, et al. Bevaci-

zumab in combination with paclitaxel for HER-2 negative meta-

static breast cancer: an economic evaluation. Eur J Health Econ.

2009;45:1397–406.

20. Fortune-Greeley A, Cornell P. Bevacizumab for the treatment

of metastatic breast cancer: a cost-effectiveness analysis. Value

Health. 2010;13(3):A34.

21. Mater-walstra KW, Dedes KJ, Schwenkglenks M, et al. Trastu-

zumab beyond progression: a cost-utility analysis. Ann Oncol.

2010;21:2161–8.

22. Lazzaro C, Bordonaro R, Cognetti F, et al. An Italian cost-effec-

tiveness analysis of paclitaxel albumin (nab-paclitaxel) versus con-

ventional paclitaxel for metastatic breast cancer patients: the

COSTANza study. Clinicoecon Outcomes Res. 2013;5:125–35.

23. Briggs AH. Handling uncertainty in cost-effectiveness models.

Pharmacoeconomics. 2000;17:479–500.

24. Bilcke J, Beutels P, Brisson M, Jit M. Accounting for methodo-

logical, structural, and parameter uncertainty in decision-analytic

models: a practical guide. Med Decis Making. 2011;31:675–92.

25. Bojke L, Claxton K, Sculpher M, Palmer S. Characterizing

structural uncertainty in decision analytic models: a review and

application of methods. Value Health. 2009;12:739–49.

26. Strong M, Oakley JE, Chilcott J. Managing structural uncer-

tainty in health economic decision models: a discrepancy

approach. J R Stat Soc Ser C Appl Stat. 2012;61:25–45.

27. Jackson CH, Bojke L, Thompson SG, Claxton K, Sharples LD. A

framework for addressing structural uncertainty in decision mod-

els. Med Decis Making. 2011;31:662–74.

28. Price MJ, Welton NJ, Briggs AH, Ades AE. Model averaging in

the presence of structural uncertainty about treatment effects:

influence on treatment decision and expected value of informa-

tion. Value Health. 2011;14:205–18.

29. Jackson CH, Thompson SG, Sharples LD. Accounting for

uncertainty in health economic decision models by using model

averaging. J R Stat Soc Ser A Stat Soc. 2009;172(2):383–404.

30. Bates M, Lieu D, Zagari M, Spiers A, Williamson T. A pharma-

coeconomic evaluation of the use of dexrazoxane in preventing

anthracycline-induced cardiotoxicity in patients with stage IIIB

or IV metastatic breast cancer. Clin Ther. 1997;19(1):167–84.

31. Nuijten M, Meester L, Waibel F, Wait S. Cost effectiveness of

letrozole in the treatment of advanced breast cancer in postmeno-

pausal women in the UK. Pharmacoeconomics. 1999;16(4):379–97.

32. Nuijten M, McCormick J, Waibel F, Parison D. Economic eval-

uation of letrozole in the treatment of advanced breast cancer in

postmenopausal women in Canada. Value Health. 2000;3(1):31–9.

33. Karnon J, Jones T. A stochastic economic evaluation of letro-

zole versus tamoxifen as a first-line hormonal therapy: for

advanced breast cancer in postmenopausal patients. Pharmacoeco-

nomics. 2003;21(7):513–25.

34. Marchetti M, Caruggi M, Colombo G. Cost utility and budget

impact of third-generation aromatase inhibitors for advanced

breast cancer: a literature-based model analysis of costs in the Ital-

ian National Health Service. Clin Ther. 2004;26(9):1546–61.

35. Okubo I, Kondo M, Toi M, Ochiai T, Miki S. Cost-effectiveness

of letrozole versus tamoxifen as first-line hormonal therapy in

treating postmenopausal women with advanced breast cancer in

Japan. Gan To Kagaku Ryoho. 2006;32(3):351–63.

36. Cameron DA, Camidge DR, Oyee J, Hirsch M. Economic evalu-

ation of fulvestrant as an extra step in the treatment sequence for

ER-positive advanced breast cancer. Br J Cancer. 2008;99(12):

1984–90.

37. Lux MP, Hartmann M, Jackisch C, et al. Cost-utility analysis for

advanced breast cancer therapy in Germany: results of the fulvestrant

sequencing model. Breast Cancer Res Treat. 2009;117(2):305–17.

38. Beck JR, Kassirer JP, Pauker SG. A convenient approximation

of life expectancy (the ‘‘DEALE’’), I: validation of the method.

Am J Med. 1982;73(6):883–8.

39. Beck JR, Pauker SG, Gottlieb JE, Klein K, Kassirer JP. A conve-

nient approximation of life expectancy (the ‘‘DEALE’’), II: use in

medical decision-making. Am J Med. 1982;73(6):889–97.

40. Beck RJ, Pauker SG. The Markov process in medical prognosis.

Med Decis Making. 1983;3:419–58.

41. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecita-

bine for HER-2–positive advanced breast cancer. N Engl J Med.

2006;355:2733–43.

42. Cameron D, Casey M, Press M, et al. A phase III randomized

comparison of lapatinib plus capecitabine versus capecitabine

alone in women with advanced breast cancer that has progressed

on trastuzumab: updated efficacy and biomarker analyses. Breast

Cancer Res Treat. 2008;112:533–43.

43. Earle CC, Chapman RH, Baker CS, et al. Systematic overview of

cost-utility assessments in oncology. J Clin Oncol. 2000;18(18):

3302–17.

44. Peasgood T, Ward SE, Brazier J. Health-state utility values in

breast cancer. Expert Rev Pharmacoecon Outcomes Res. 2010;

10(5):553–66.

45. Lloyd A, Nafees B, Narewska J, Dewilde S, Watkins J. Health

state utilities for metastatic breast cancer. Br J Cancer. 2006;95(6):

683–90.

46. McLachlan SA, Pintilie M, Tannock IF. Third line chemother-

apy in patients with metastatic breast cancer: an evaluation of qual-

ity of life and cost. Breast Cancer Res Treat. 1999;54:213–23.

STRUCTURAL UNCERTAINTY IN MODELING ADVANCED BREAST CANCER

ORIGINAL ARTICLE 11

 by guest on January 11, 2016mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com/


47. Micromedex Solutions. Red Book Online. Ann Arbor (MI):

Truven Health Analytics; 2013. Available from: http://

www.micromedexsolutions.com.

48. Bureau of Labor Statistics. Consumer price index (CPI). Avail-

able from: http://www.bls.gov/cpi/.

49. R Development Core Team. R: A Language and Environment

for Statistical Computing. Vienna: R Foundation for Statistical

Computing; 2013. Available from: http://www.R-project.org.

50. Frederix GW, van Hasselt JG, Schellens JH, et al. The impact of

structural uncertainty on cost-effectiveness models for adjuvant

endocrine breast cancer treatments: the need for disease-specific

model standardization and improved guidance. Pharmacoeco-

nomics. 2014;32(1):47–61.

51. Jackson CH, Thompson SG, Sharples LD. Accounting for

uncertainty in health economic decision models by using model

averaging. J R Stat Soc Ser A Stat Soc. 2009;172(2):383–404.

LE

12 � MEDICAL DECISION MAKING/MON–MON XXXX

 by guest on January 11, 2016mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com/


Appendix Table 3. Costs adjusted to 2013 U.S. Dollars. 

 Adjust Cost in 2013* Source 

Cost of 250-mg Lapatinib per Tablet $31.3 [1] 

Cost of 500-mg Capecitabine per Tablet $33.2 1] 

Average Cost per Severe Diarrhea Event $7,363 [3, 4] 

Average Monthly Cost in Central Nervous System (CNS) Metastases $10,490 [5] 

Average Cost per Cardiotoxicity Event $1,979 [6] 

Average Monthly Cost after Disease Progression (Third-line Therapy) $4,725 [2] 

Average Monthly Cost after Disease Progression (Supportive and Terminal Care) $1,143 [7] 

Average Hourly Pay $22.0 [8] 

*Current costs in 2013. Previous costs were adjusted to 2013 U.S. dollars using Consumer Price Index – Medical Care. 

 



# DATA GENERATION PROCESS USING R PROGRAMMING LANGUAGE (VERSION 3.2.0):  
 
DATAGEN <- function(i)  
{ 
# Generating data from the clinical trial for the combination therapy of Lapatinib and Capecitabine: 
ORR <- rbeta(1, 102.833, 328.333)   # Generate Overall Response Rate (ORR) of 23.7% within its 95% CI (18.0% - 30.3%) from the assumed 

Beta distribution  
PFS <- rgamma(1, shape = 174.31, scale = 0.03737)  # Generate Progression-Free Survival (PFS) of 6.25 months within its 95% CI (5.56 - 8.52 months) from the 

assumed Gamma distribution 
OS <- rgamma(1, shape = 165.7784, scale = 0.09773) # Generate the Overall Survival (OS) of 15.62 months within its 95% CI between 13.59 months and 21.14 

months from the assumed Gamma distribution 
PPS <- OS - PFS      # PPS = Post Progression Survival, i.e. survival after disease progression 
DoR <- rgamma(1, shape = 174.37, scale = 0.04064) # Generate the Duration of Response (DoR) of 7.40 months within its 95% CI between 4.85 months and 

8.07 months from the assumed Gamma distribution 
# Generating transition probabilities based on data from the clinical trial for the combination therapy of Lapatinib and Capecitabine: 

pSR <- 1 - exp(-1.5*ORR/PFS)   # Probability from Stable to Responding state  
pSP <- 1 - exp(-(1.5*(-1/PFS)*log(1 - 0.5)))   # Probability from Stable to Progressing state  
rD <- 1.5*(-1/OS)*log(1 - 0.5)   # 1.5 Monthly average Overall Death Rate 

rPD <- 1.5*(-1/PPS)*log(1 - 0.5)   # 1.5 Monthly Death Rate in the Progressing state 
rSD <- (3*rD - rPD)/2 # Overall Death Rate is the average death rates in the Stable, Responding and Progressing States 

assuming death rate is the same in Stable and Responding states 
pSD <- 1 - exp(-rSD)    # Probability from Stable to Dead       
pRP <- 1 - exp(-(1.5*(-1/DoR)*log(1 - 0.5)))   # Probability from Responding to Progressing state  
pPD <- 1 - exp(-(1.5*(-1/PPS)*log(1 - 0.5)))  # Probability from Progressing to Dead  

 
# Generating data from the clinical trial for for the monotherapy (m) with capecitabine alone: 
ORR_m <- rbeta(1, 61.339, 373.689) # Generate the Overall Response Rate (ORR) of 13.9% within its 95% CI between 9.5% and 

19.5% from the assumed Beta distribution  
PFS_m <- rgamma(1, shape = 232.708, scale = 0.01715) # Generate the Progression-Free Survival (PFS) of 4.06 months within its 95% CI between 3.07 

months and 4.64 months from the assumed Gamma distribution 
OS_m <- rgamma(1, shape = 227.112, scale = 0.06613) # Generate the Overall Survival (OS) of 15.37 months within its 95% CI between 11.33 months 

and 17.31 months from the assumed Gamma distribution 
PPS_m <- OS_m - PFS_m      # PPS = Post Progression Survival, i.e. survival after disease progression 
DoR_m <- rgamma(1, shape = 497.968, scale = 0.01374) # Generate the Duration of Response (DoR) of 7.00 months within its 95% CI between 5.60 

months and 7.45 months from the assumed Gamma distribution 
# Generating transition probabilities based on data from the clinical trial for the monotherapy (m) with capecitabine alone: 
pSR_m <- 1 - exp(-1.5*ORR_m/PFS_m)   # Probability from Stable to Responding state  
pSP_m <- 1 - exp(-(1.5*(-1/PFS_m))*log(1 - 0.5))   # Probability from Stable to Progressing state  
rD_m <- 1.5*(-1/OS_m)*log(1 - 0.5)    # 1.5 Monthly average Overall Death Rate 

rPD_m <- 1.5*(-1/PPS_m)*log(1 - 0.5)   # 1.5 Monthly Death Rate in the Progressing state 

rSD_m <- (3*rD_m - rPD_m)/2 # Overall Death Rate is the average death rates in the Stable, Responding and Progressing States 
assuming death rate is the same in Stable and Responding states 



pSD_m <- 1 - exp(-rSD_m)     # Probability from Stable to Dead  
pRP_m <- 1 - exp(-(1.5*(-1/DoR_m)*log(1 - 0.5)))   # Probability from Responding to Progressing state   
pPD_m <- 1 - exp(-(1.5*(-1/PPS_m)*log(1 - 0.5)))  # Probability from Progressing to Dead  
 
# Transition probabilities of MODEL 1 for the combination therapy of Lapatinib and Capecitabine:  
## In Stable Health-State: 

pSR_1 <- pSR      # Probability from Stable to Responding state  
pSP_1 <- pSP       # Probability from Stable to Progressing state  
pSD_1 <- pSD      # Probability from Stable to Dead       
pSS_1 <- 1 - (pSR_1 + pSP_1 + pSD_1)   # Probability of staying in the same Stable state  
## In Respond-to-Therapy Health-State: 

pRP_1 <- pRP       # Probability from Responding to Progressing state  

pRD_1 <- pSD      # Probability from Responding to Dead assumed to be the same as in the Stable state 

pRR_1 <- 1 - (pRP_1 + pRD_1)    # Probability of staying in the same Responding state  
## In Disease-Progression Health State: 

pPD_1 <- pPD      # Probability from Progressing to Dead  

pPP_1 <- 1 - pPD_1     # Probability of staying in the same Progressing state  

 
# Transition probabilities of MODEL 1 for the monotherapy (m) with capecitabine alone: 
## In Stable Health-State: 
pSR_1_m <- pSR_m     # Probability from Stable to Responding state  

pSP_1_m <- pSP_m     # Probability from Stable to Progressing state  
pSD_1_m <- pSD_m     # Probability from Stable to Dead  
pSS_1_m <- 1 - (pSR_1_m + pSP_1_m + pSD_1_m)  # Probability of staying in the same Stable state  
## In Respond-to-Therapy Health-State: 

pRP_1_m <- pRP_m     # Probability from Responding to Progressing state  
pRD_1_m <- pSD_m     # Probability from Responding to Dead assumed to be the same as in the Stable state 
pRR_1_m <- 1 - (pRP_1_m + pRD_1_m)   # Probability of staying in the same Responding state  
## In Disease-Progression Health State: 

pPD_1_m <- pPD_m     # Probability from Progressing to Dead  
pPP_1_m <- 1 - pPD_1_m     # Probability of staying in the same Progressing state 
 
# Transition Probabilities of MODEL 2 for the combination therapy of L+C: 

pSR_2 <- pSR 
pSP_2 <- pSP 
pSS_2 <- 1 - (pSR_2 + pSP_2) 
pRP_2 <- pRP 
pRR_2 <- (1 - pRP_2)  
pPD_2 <- pPD 
pPP_2 <- 1 - pPD_2 
 
 



# Transition Probabilities of MODEL 2 for the monotherapy (m) with C: 
pSR_2_m <- pSR_m 
pSP_2_m <- pSP_m 
pSS_2_m <- 1 - (pSR_2_m + pSP_2_m) 
pRP_2_m <- pRP_m 
pRR_2_m <- (1 - pRP_2_m)  
pPD_2_m <- pPD_m 
pPP_2_m <- 1 - pPD_2_m 
 
# Transition Probabilities of MODEL 3 for the combination therapy of L+C: 
pSP_3 <- pSP 
pSD_3 <- 1 - exp(-(2*rD - rPD))   # Overall Death Rate is the average death rates in the Stable and Progressing States 

pSS_3 <- 1 - (pSP_3 + pSD_3)  
pPD_3 <- pPD 
pPP_3 <- 1 - pPD_3 
 
# Transition Probabilities of MODEL 3 for the monotherapy (m) with C: 
pSP_3_m <- pSP_m 
pSD_3_m <- 1 - exp(-(2*rD_m - rPD_m)) # Overall Death Rate is the average death rates in the Stable and Progressing States 
pSS_3_m <- 1 - (pSP_3_m + pSD_3_m)  
pPD_3_m <- pPD_m 
pPP_3_m <- 1 - pPD_3_m 
 
# Transition Probabilities of MODEL 4 for the combination therapy of L+C: 

pSP_4 <- pSP 
pSS_4 <- (1 - pSP_4) 
pPD_4 <- pPD 
pPP_4 <- 1 - pPD_4        
 
# Transition Probabilities of MODEL 4 for the monotherapy (m) with C: 
pSP_4_m <- pSP_m 
pSS_4_m <- (1 - pSP_4_m) 
pPD_4_m <- pPD_m 
pPP_4_m <- 1 -  pPD_4_m     
 
# Generating Health Utilities in the 3 health states with BETA distribution: 

Utility_S <- rbeta(1, 58.5, 27.1)  # assumed base-case health utility for the stable state of 0.70 ranging from 0.50 to 0.80 
Utility_R <- rbeta(1, 33.8, 7.9)  # assumed base-case health utility for the responding state of 0.84 ranging from 0.57 to 0.93 

Utility_P <- rbeta(1, 64.5, 57.6)  # assumed base-case health utility for the disease-progressing state of 0.50 ranging from 0.45 to 0.72 
 
 
 



# Generating estimated mean costs for the 3 health states (Stable, Responding, and Progressing) with GAMMA distribution for the combination therapy L+C: 
TotalCost_S <- rgamma(1, shape = 25, scale = 577.2)  # estimated cost in Stable state (SD) = $14,430 ($2,886) [original cost = $6,208.17] 

TotalCost_R <- rgamma(1, shape = 25, scale = 577.2)  # estimated cost in Responding state (SD) = $14,430 ($2,886) [original cost = $6,208.17] 

TotalCost_P <- rgamma(1, shape = 25, scale = 290.4)  # estimated cost in Progressing state (SD) = $7,260 ($1,452) [original cost = $5,426.36] 

 
# Generating estimated mean costs for the 3 health states (Stable, Responding, and Progressing) with GAMMA distribution for the monotherapy (m) with C: 

TotalCost_S_m <- rgamma(1, shape = 25, scale = 336.56) # estimated cost in Stable state (SD) = $8,414 ($1,683) [original cost = $1,275.46] 
TotalCost_R_m <- rgamma(1, shape = 25, scale = 336.56) # estimated cost in Responding state (SD) = $8,414 ($1,683) [original cost = $1,275.46] 
TotalCost_P_m <- rgamma(1, shape = 25, scale = 304.24) # estimated cost in Progressing state (SD) = $7,606 ($1,521) [original cost = $5,713.20] 

 
MatrixI_2 <- diag(2)     # Creating 2x2 Identity Matrix I 
MatrixI_3 <- diag(3)     # Creating 3x3 identity matrix I 
 
# Creating Matrix Q for MODELS 1, 2, 3, and 4 for the combination therapy of L+C: 
MatrixQ_1 <- matrix(c(pSS_1, pSR_1, pSP_1, 0, pRR_1, pRP_1, 0, 0, pPP_1), ncol = 3, byrow = TRUE)  
MatrixQ_2 <- matrix(c(pSS_2, pSR_2, pSP_2, 0, pRR_2, pRP_2, 0, 0, pPP_2), ncol = 3, byrow = TRUE) 
MatrixQ_3 <- matrix(c(pSS_3, pSP_3, 0, pPP_3), ncol = 2, byrow =TRUE) 
MatrixQ_4 <- matrix(c(pSS_4, pSP_4, 0, pPP_4), ncol = 2, byrow =TRUE) 
 
# Creating Matrix Q for MODELS 1, 2, 3, and 4 for the monotheapy (m) with C: 

MatrixQ_1_m <- matrix(c(pSS_1_m, pSR_1_m, pSP_1_m, 0, pRR_1_m, pRP_1_m, 0, 0, pPP_1_m), ncol = 3, byrow = TRUE) 
MatrixQ_2_m <- matrix(c(pSS_2_m, pSR_2_m, pSP_2_m, 0, pRR_2_m, pRP_2_m, 0, 0, pPP_2_m), ncol = 3, byrow = TRUE) 
MatrixQ_3_m <- matrix(c(pSS_3_m, pSP_3_m, 0, pPP_3_m), ncol = 2, byrow =TRUE) 
MatrixQ_4_m <- matrix(c(pSS_4_m, pSP_4_m, 0, pPP_4_m), ncol = 2, byrow =TRUE) 
 
# Creating Matrix N = (I - Q)^1 for MODELS 1, 2, 3, and 4 for the combination therapy of L+C: 
MatrixN_1 <- solve(MatrixI_3 - MatrixQ_1)               
MatrixN_2 <- solve(MatrixI_3 - MatrixQ_2) 
MatrixN_3 <- solve(MatrixI_2 - MatrixQ_3) 
MatrixN_4 <- solve(MatrixI_2 - MatrixQ_4) 
 
# Creating Matrix N = (I - Q)^1 for MODELS 1, 2, 3, and 4 for the monotherapy (m) with C: 

MatrixN_1_m <- solve(MatrixI_3 - MatrixQ_1_m) 
MatrixN_2_m <- solve(MatrixI_3 - MatrixQ_2_m) 
MatrixN_3_m <- solve(MatrixI_2 - MatrixQ_3_m) 
MatrixN_4_m <- solve(MatrixI_2 - MatrixQ_4_m) 
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 1 for the combination therapy of L+C: 
cSTABLE_1 <- MatrixN_1[1, 1]    # number of cycles in Stable state 

ySTABLE_1 <- cSTABLE_1*1.5/12    # number of years in Stable state (each cycle lasts 1.5 months) 
cRESPONDING_1 <- MatrixN_1[1, 2]   # number of cycles in Responding state 

yRESPONDING_1 <- cRESPONDING_1*1.5/12  # number of years in Responding state (each cycle lasts 1.5 months) 



 
cPROGRESSING_1 <- MatrixN_1[1, 3]   # number of cycles in Progressing state 
yPROGRESSING_1 <- cPROGRESSING_1*1.5/12  # number of years in Progressing state (each cycle lasts 1.5 months) 

 
LifeYears_1 <- ySTABLE_1 + yRESPONDING_1 + yPROGRESSING_1            
QALY_1 <- (ySTABLE_1*Utility_S) + (yRESPONDING_1*Utility_R) + (yPROGRESSING_1*Utility_P)   # Total QALYs 
TOTALCOST_1 <- (cSTABLE_1*TotalCost_S) + (cRESPONDING_1*TotalCost_R) + (cPROGRESSING_1*TotalCost_P)  # Total Cost 
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 1 for the monotherapy (m) with C: 
cSTABLE_1_m <- MatrixN_1_m[1, 1]         
ySTABLE_1_m <- cSTABLE_1_m*1.5/12         
 
cRESPONDING_1_m <- MatrixN_1_m[1, 2]       
yRESPONDING_1_m <- cRESPONDING_1_m*1.5/12      
 
cPROGRESSING_1_m <- MatrixN_1_m[1, 3]        
yPROGRESSING_1_m <- cPROGRESSING_1_m*1.5/12      
 
LifeYears_1_m <- ySTABLE_1_m + yRESPONDING_1_m + yPROGRESSING_1_m  
QALY_1_m <- (ySTABLE_1_m*Utility_S) + (yRESPONDING_1_m*Utility_R) + (yPROGRESSING_1_m*Utility_P)       
TOTALCOST_1_m <- (cSTABLE_1_m*TotalCost_S_m) + (cRESPONDING_1_m*TotalCost_R_m) + (cPROGRESSING_1_m*TotalCost_P_m)  
 
# Incremental TOTALCOST and QALY for MODEL 1: 
dQALY_1 <- QALY_1 - QALY_1_m 
dTOTALCOST_1 <- TOTALCOST_1 - TOTALCOST_1_m      
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 2 for the combination therapy of L+C: 
cSTABLE_2 <- MatrixN_2[1, 1] 
ySTABLE_2 <- cSTABLE_2*1.5/12 
 
cRESPONDING_2 <- MatrixN_2[1, 2] 
yRESPONDING_2 <- cRESPONDING_2*1.5/12 
 
cPROGRESSING_2 <- MatrixN_2[1, 3] 
yPROGRESSING_2 <- cPROGRESSING_2*1.5/12 
 
LifeYears_2 <- ySTABLE_2 + yRESPONDING_2 + yPROGRESSING_2 
QALY_2 <- (ySTABLE_2*Utility_S) + (yRESPONDING_2*Utility_R) + (yPROGRESSING_2*Utility_P) 
TOTALCOST_2 <- (cSTABLE_2*TotalCost_S) + (cRESPONDING_2*TotalCost_R) + (cPROGRESSING_2*TotalCost_P) 
 
 



# Converting number of cycles to number of years for each health state and life expectancy in MODEL 2 for the monotherapy (m) with C: 
cSTABLE_2_m <- MatrixN_2_m[1, 1] 
ySTABLE_2_m <- cSTABLE_2_m*1.5/12 
 
cRESPONDING_2_m <- MatrixN_2_m[1, 2] 
yRESPONDING_2_m <- cRESPONDING_2_m*1.5/12 
 
cPROGRESSING_2_m <- MatrixN_2_m[1, 3] 
yPROGRESSING_2_m <- cPROGRESSING_2_m*1.5/12 
 
LifeYears_2_m <- ySTABLE_2_m + yRESPONDING_2_m + yPROGRESSING_2_m  
QALY_2_m <- (ySTABLE_2_m*Utility_S) + (yRESPONDING_2_m*Utility_R) + (yPROGRESSING_2_m*Utility_P) 
TOTALCOST_2_m <- (cSTABLE_2_m*TotalCost_S_m) + (cRESPONDING_2_m*TotalCost_R_m) + (cPROGRESSING_2_m*TotalCost_P_m) 
 
# Incremental TOTALCOST and QALY for MODEL 2: 
dQALY_2 <- QALY_2 - QALY_2_m 
dTOTALCOST_2 <- TOTALCOST_2 - TOTALCOST_2_m  
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 3 for the combination therapy of L+C: 
cSTABLE_3 <- MatrixN_3[1, 1] 
ySTABLE_3 <- cSTABLE_3*1.5/12 
 
cPROGRESSING_3 <- MatrixN_3[1, 2] 
yPROGRESSING_3 <- cPROGRESSING_3*1.5/12 
 
LifeYears_3 <- ySTABLE_3 + yPROGRESSING_3 
QALY_3 <- (ySTABLE_3 *Utility_S) + (yPROGRESSING_3 *Utility_P) 
TOTALCOST_3 <- (cSTABLE_3*TotalCost_S) + (cPROGRESSING_3*TotalCost_P) 
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 3 for the monotherapy (m) with C: 

cSTABLE_3_m <- MatrixN_3_m[1, 1] 
ySTABLE_3_m <- cSTABLE_3_m*1.5/12 
 
cPROGRESSING_3_m <- MatrixN_3_m[1, 2] 
yPROGRESSING_3_m <- cPROGRESSING_3_m*1.5/12 
 
LifeYears_3_m <- ySTABLE_3_m + yPROGRESSING_3_m 
QALY_3_m <- (ySTABLE_3_m*Utility_S) + (yPROGRESSING_3_m*Utility_P) 
TOTALCOST_3_m <- (cSTABLE_3_m*TotalCost_S_m) + (cPROGRESSING_3_m*TotalCost_P_m) 
 
 



# Incremental TOTALCOST and QALY for MODEL 3: 
dQALY_3 <- QALY_3 - QALY_3_m 
dTOTALCOST_3 <- TOTALCOST_3 - TOTALCOST_3_m  
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 4 for the combination therapy of L+C: 
cSTABLE_4 <- MatrixN_4[1, 1] 
ySTABLE_4 <- cSTABLE_4*1.5/12 
 
cPROGRESSING_4 <- MatrixN_4[1, 2] 
yPROGRESSING_4 <- cPROGRESSING_4*1.5/12 
 
LifeYears_4 <- ySTABLE_4 + yPROGRESSING_4 
QALY_4 <- (ySTABLE_4*Utility_S) + (yPROGRESSING_4*Utility_P) 
TOTALCOST_4 <- (cSTABLE_4*TotalCost_S) + (cPROGRESSING_4*TotalCost_P) 
 
# Converting number of cycles to number of years for each health state and life expectancy in MODEL 4 for the monotherapy (m) with C: 
cSTABLE_4_m <- MatrixN_4_m [1, 1] 
ySTABLE_4_m  <- cSTABLE_4_m *1.5/12 
 
cPROGRESSING_4_m  <- MatrixN_4_m [1, 2] 
yPROGRESSING_4_m  <- cPROGRESSING_4_m *1.5/12 
 
LifeYears_4_m  <- ySTABLE_4_m + yPROGRESSING_4_m      
QALY_4_m <- (ySTABLE_4_m*Utility_S) + (yPROGRESSING_4_m*Utility_P) 
TOTALCOST_4_m <- (cSTABLE_4_m*TotalCost_S_m) + (cPROGRESSING_4_m*TotalCost_P_m)   
 
# Incremental TOTALCOST and QALY for the MODEL 4: 

dQALY_4 <- QALY_4 - QALY_4_m 
dTOTALCOST_4 <- TOTALCOST_4 - TOTALCOST_4_m       
 
sample <- data.frame(Utility_S, Utility_R, Utility_P, TotalCost_S, TotalCost_R, TotalCost_P, TotalCost_S_m, TotalCost_R_m, TotalCost_P_m,  LifeYears_1, 
QALY_1, TOTALCOST_1, LifeYears_1_m, QALY_1_m, TOTALCOST_1_m, LifeYears_2, QALY_2, TOTALCOST_2, LifeYears_2_m, QALY_2_m, 
TOTALCOST_2_m, LifeYears_3, QALY_3, TOTALCOST_3, LifeYears_3_m, QALY_3_m, TOTALCOST_3_m, LifeYears_4, QALY_4, TOTALCOST_4, 
LifeYears_4_m, QALY_4_m, TOTALCOST_4_m, dQALY_1, dTOTALCOST_1, dQALY_2, dTOTALCOST_2, dQALY_3, dTOTALCOST_3, dQALY_4, 
dTOTALCOST_4) 
 
return(sample) 
} 
 
# Generating 10,000 samples (data frames): 
df10000 <- sapply(1:10000, DATAGEN)  
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